Parallel Algorithms for Computing the Smith Normal Form of Large Matrices
نویسنده
چکیده
Smith normal form computation has many applications in group theory, module theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Smith normal form of large dense matrices. The computation has two main problems: the high execution time and the memory requirements, which might exceed the memory of one processor. To avoid these problems, we develop two parallel Smith normal form algorithms using MPI. These are the first algorithms computing the Smith normal form with corresponding transformation matrices, both over the rings Z and F[x]. We show that our parallel algorithms both have a good efficiency, i.e. by doubling the processes, the execution time is nearly halved, and succeed in computing the Smith normal form of dense example matrices over the rings Z and F2[x] with more than thousand rows and columns.
منابع مشابه
Parallel Algorithm for Computing the Smith Normal Form of Large Matrices
Smith normal form computation has many applications in group theory, module theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Smith normal form of large dense matrices. The computation has two main problems: the high execution time and the memory requirements, ...
متن کاملEfficient parallelizations of Hermite and Smith normal form algorithms
Hermite and Smith normal form are important forms of matrices used in linear algebra. These terms have many applications in group theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Hermite and Smith normal form of large dense matrices. The main problems of the c...
متن کاملFast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملNear Optimal Algorithms for Computing Smith Normal Forms of Integer
We present new algorithms for computing Smith normal forms of matrices over the integers and over the integers modulo d. For the case of matrices over Z Z d, we present an algorithm that computes the Smith form S of an A 2 Z Z nm d in only O(n ?1 m) operations from Z Z d. Here, is the exponent for matrix multiplication over rings: two n n matrices over a ring R can be multiplied in O(n) operati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009